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Abstruct - A 250 W dual-band power amplifier 
belonging to the Class E/P switching amplifier family is 
presented. The amplifier operates in the 7 MHz and 10 MHz 
HAM bands, achieving 16 dB and 15 d B gain with power 
added effkiencies (PAE) of 92 % and 87 % in those bands, 
respectively. It utilizes dual-resonant passive input and 
output networks to achieve high-efficiency Class E/F,,, 
operation at both frequencies of operation, allowing the same 
passive networks to be used for both frequency bands 
without the use of band-select switches. 

I. IF~~-R~DUCTI~N 

Dual-band transceiver systems have been proposed to 
address the increasing demand for system flexibility [l] 
and capacity [2] created by the continuing growth of 
wireless communication applications. Such systems need a 
means of amplifying signals at the two frequencies of 
operation. In particular, they require power amplifiers on 
the transmitter side capable of operation in both bands. 

Various dual-band power amplifier design strategies 
have been employed in the past [2], each differing in the 
amount of circuitry used for operation in both bands. To 
date, all reported dual-band power amplifiers utilize 
semiconductor switches to re-route the signal depending 
on the band of operation, employ diplexers, or employ 
electronically tunable components [2,3]. 

The implicit assumption for using active signal-routing 
switches seems to be that active switches outperform dual- 
band tuned passive networks. However, because each 
active device in the signal path itself introduces significant 
losses, we propose a design strategy avoiding the use of 
such signal-routing devices. Furthermore, using networks 
tuned at both frequencies of operation allows a reduced 
component count compared to strategies using diplexers. 

In this paper, we present a design using dual-band 
passive input and load networks providing transformation 
and harmonic-tuning for both bands of operation. Our 
approach avoids active band-switching components in 
favor of shared passive networks. Similar networks have 
been used in concurrent multi-band low noise amplifiers 
(LNA) recently reported (41. 

To demonstrate this approach, and to allow comparison 
with similar single-band designs, a first dual-band 
harmonic-tuned power amplifier has been implemented. 

This amplifier does not require a band-select signal and 
exhibits performance comparable to a single-band design. 

II. THEORY OF OPERATION 

A. Class E/Fx Power Amplifiers 

The amplifier described in this paper is based on the, 
Class-E/Fdd mode of operation, formerly described as a 
single-band design in [5,6]. The Class-E/F family of 
power amplifiers operates the active device as a switch. 
Their tuning network incorporates the switch output 
capacitance into the load network as in Class-E power 
amplifiers, but allows improved waveforms by tuning 
some of the harmonics as in inverse Class-F [7]. 
Subscripts in the name indicate these tuned harmonics, 
and the switch is presented with a capacitance at the 
remaining harmonics. By tuning the fundamental 
frequency load sufftciently inductive, the E/F amplifier is 
made to operate in zero voltage switching (ZVS) mode, 
eliminating losses due to discharge of the output 
capacitance. 

The Class E/Fdd tuning produces half-sine voltage 
waveforms at the switch output. Current waveforms are 
square-waves with half-cosine waveforms superimposed, 
with the amplitude of the half-cosine determined by the 
capacitance parallel to the switch [5]. The Class E/F&d 
mode was chosen because, unlike Class-E, the impedance 
of the switch output capacitance and the load conductance 
are independent parameters, allowing output power at both 
frequencies to be independent of this capacitance. 

3. A Harmonic-Tuned Dual-Band Power Amplifier 

Fig. 1 shows the harmonic-tuned dual-band power 
amplifier topology used for the amplifier reported in this 
paper. Input and output port impedance is 50 Q. The input 
network consists of Lrin, Grin, Tin and Lsin. Together, these 
components convert a 5OQ unbalanced signal source to a 
balanced signal conjugate matched to the transistor input. 
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The output network consists of CpUt, L,,*, C,, and T,,,. 
T,,, is a 1: 1 balun, the magnetizing inductance of which is 
utilized in the output network tuning. Tout, L,, and CmUt 
provide inductive, capacitive and again inductive 
susceptance as frequency is increased. These three 
components provide inductive susceptance needed for 
ZVS operation at each frequency band. 

At all odd harmonics of each frequency of operation the 
network including CpoUt provides capacitive susceptance 
that - along with the transistor output capacitance - 
provides a low impedance path to ground compared to the 
load resistance[8]. Due to the differential topology, each 
transistor is presented only its own output capacitance at 
even harmonics. Thus, this amplifier operates in Class 
E/F&d mode at both bands. 

Because of the dual-band harmonic-tuning scheme 
employed in this amplifier, no additional switches or 
electronically tunable components are needed for correct 
operation in either band. This promises to reduce the 
complexity of dual-band power amplifiers, thereby 
increasing reliability and decreasing cost. 

III. CIRCUIT DESIGN 

To demonstrate the dual-band harmonic-tuned powei 
amplifier concept, a Class-E/F&d amplifier using the 
topology shown in Fig. 1 has been constructed. This 
amplifier uses two IRFP250N 200,30A MOSFETs. 

To determine the susceptance needed for ZVS operation 
at each frequency, two single-band Class E/F amplifiers 
are simulated that use an LC parallel tank at the output. 
The simulated single-band designs and the final dual-band 
amplifier have a sufficiently large value for C,,,, in 
common that presents a low impedance at the first odd 

harmonic. This is important to allow the inductive 
susceptance determined from these single-band 

Fig. 1. Topology of the dual-band 
amplifier reported in this paper. 

harmonic-tuned power 

simulations to be used in the design of the dual-band load 
network. 

The transistor model used in the simulation consists of 
an ideal switch with a nonlinear output capacitance fitted 
to measured data. Component values for the dual-band 
load network were calculated that provide a good trade-off 
between losses and bandwidth besides the susceptance 
needed for ZVS operation at both frequencies. A 
simulation of the amplifier - assuming quality factors of 
120 and 160 for inductors and capacitors respectively - is 
performed to assure ZVS operation at both design 
frequencies and reasonable losses. Transistor lead 
inductances are also included to estimate the ringing 
waveforms. The simulation predicts an output power of 
approximately 400W in both bands according to: 

hu,=V,k2WLmd (1) 

with load resistance Rioad = 50 Q and peak drain voltage’ 

‘?‘k = x . Vsuppl )! = 200 v. 
The amplifier is constructed on a patterned FR4 board. 

The putput network is implemented using ATClOOE and 
ATCl80R series capacitors from American Technical 
Ceramics. Inductor L,, and transformer T,, are both air- 
core and are wound from magnet ribbon wire and 5OzZ 
semi-rigid coaxial cable respectively. Holes in the circuit 
board allow the transistors to be mounted directly to a 
backside heat sink. 

With a load connected, the conductance presented to the 
transistor drains as measured with an HP4149A 
impedance analyzer is lower than the expected 2mS. 

The reason for this decrease is likely to be the 
distributed inductance on the circuit board and the non- 
ideal coupling factor of T,,,. This decreased load 
conductance causes the output power to be less than the 

design goal. 

Fig. 2. Photograph of assembled amplifier. Width x length x height 
approximately 1 Ocm x 18cm x 14cm 
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Fig. 3. S-parameters S21 and S11 as a function of frequency for 
the dual-band power amplifier under Class-A bias with 4OrnA total 
supply current, 30V supply voltage and small signal input. The plot 
shows two gain peaks close to the desired bands of operation. 

An ad hoc input network consisting of Tin and Lsin is 
used to determine the proper input-matching network. By 
tuning this network once for each frequency of operation, 
appropriate characteristics for the matching network in 
each band may be determined. Component values for a 
dual-band input network achieving similar transformations 
at both frequencies simultaneously may then bZ 
calculated. A photograph of the prototype amplifier is 
shown in Fig.2. 

IV. PERFORMANCE 

Like any saturated amplifier, the output power may be 
adjusted by changing the supply voltage. Fig. 6 shows 
measured power-added efficiency (PAE) at both 
frequencies as the output power is backed off by up to 
6dB. 

The small-signal transfer characteristics of the amplifier Figs. 7 and 8 show measured drain voltage waveforms 
are determined first td assure that it displays dual-band at 7.15MHz and 10. IMHz under full output power. 
gain behavior. Despite the positive value of S11 between The amplifier reported here compares well to a similar 
20MHz and SOMHz, the amplifier does not oscillate and is single-band design. The amplifier exhibits lower gain and 
stable at large-signal Class E/F operation. higher efficiency than the single-band design reported in 
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Fig. 5. Gain, Drain Efftciency and PAE versus input power at 
lO.lMHz running at 58V supply voltage 

Figs. 4 and 5 show the measured gain, drain efficiency 
and PAE versus input power while operating from a 58 V 
supply at 7.15 MHz and 10.1 MHz respectively. As noted 
earlier, the measured output power is lower than simulated 
due to parasitic impedance transformation. The bandwidth 
in both bands was sufficient to allow operation over the 
7.OMHz-7.3MHz and the lO.OMHz-10.18MHz bands. 
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Fig. 4. Gain, Drain Efficiency and PAE versus input power at 
7.15MHz running at 58V supply voltage. As expected, gain drops 

Fig. 6. Power Added Effrency (PAE) as a function of input power 

while efficiency improves as the input power is increased 
at 7.15MHz and 10. 1MHz. The amplifier operates with good 
efficiency over a 6dB range of output powers 
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Fig. 7. Measured drain voltage waveforms at 7.15hIHz. The 
ringing is due to transistor package inductance and possibly slight 
harmonic mistuning. 

[5] presumably due to the use of a lower-voltage transistor 
and larger, higher-Q passives. During operation an 
external fan has been used to cool the heat sink. This fan 
may not be necessary as the amplifier remains relatively 
cool. Table 1 shows a performance summary. 

V. CONCLUSION 

The first dual-band harmonic-tuned power amplifier is 
reported that avoids the use of band-selecting active 
devices or diplexers. The amplifier exhibits performance 
in each band comparable to a single-band design, in good 
agreement to simulations in this configuration. The use of 
dual-band tuned harmonic networks could thus be an 
alternative to the use of band-switching active signal 
routing devices. 
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Fig. 8. Measured Drain Voltage Waveforms at lO.lhIHz. The 
waveforms exhibit similar ringing as in operation at 7.15MHz 
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